

IEC TR 61282-14

Edition 3.0 2024-04 REDLINE VERSION

TECHNICAL REPORT

Fibre optic communication system design guidelines – Part 14: Determination of the uncertainties of attenuation measurements in fibre plants

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.180.01

ISBN 978-2-8322-8867-2

Warning! Make sure that you obtained this publication from an authorized distributor.

- 2 - IEC TR 61282-14:2024 RLV © IEC 2024

CONTENTS

FOREWORD5		
INTRODUCT	ION	7
1 Scope		8
2 Normativ	ve references	8
3 Terms o	definitions, and abbreviated terms	8
3 1 Te	rms and definitions	o
3.1 Te	hreviated terms	
		10
4.1 VVr	hat is uncertainty?	
4.2 Or	igin of uncertainties	
4.3 VVr	hat may could not be considered as uncertainty?	11
5 Fibre ca	bling attenuation measurement	
5.1 Te	st methods	
5.2 So	urces of uncertainty to be considered	12
5.2.1	Analysis	12
5.2.2	Uncertainties due to the environment	16
5.2.3	Uncertainties due to operator skills	16
5.2.4	Uncertainties due to test methods	16
5.2.5	Uncertainties due to measuring instruments	16
5.2.6	Uncertainties due to the setup	18
5.2.7	Uncertainties due to cabling	18
6 Uncertai	inties estimation	19
6.1 Lig	ht source power meter measurement methods	19
6.1.1	Measurement model	19
6.1.2	Accumulation of uncertainties	22
6.2 OT	DR methods	23
6.2.1	Measurement model for unidirectional methods	23
6.2.2	OTDR bidirectional measurements	24
7 General	representation of the formula using sensitivity coefficients	27
8 Calculat	ion	32
8.1 Co	mbined standard uncertainty	32
8.2 Ex	panded uncertainty	32
8.3 De	termination of the coverage factor k	32
8.3.1	General approach	32
8.3.2	Discussion	32
8.3.3	Typical values of degree of freedom	33
Annex A (info	ormative) Mathematical basis	35
A.1 Ge	neral	35
А.2 Ту	pe A evaluation of uncertainty	35
A.3 Ty	pe B evaluation of uncertainty	
A.4 De	termining the combined standard uncertainty	
A.5 Re	porting	
Annex B (info	ormative) Test methods	
B.1 IS	PM test methods as per IEC 61280-4-1 and 61280-4-2	
B.1.1	General	
B.1.2	Measurement configuration	
_ · · · _	J	

IEC TR 61282-14:2024 RLV © IEC 2024 - 3 -

B.1.3	One-cord reference configuration	38	
B.1.4	Two-cord reference configuration	39	
B.1.5	Three-cord reference configuration	39	
B.1.6	Equipment cord reference configuration	39	
B.2 OTE	R Test methods as per IEC 61280-4-2 and 61280-4-3	39	
B.2.1	Unidirectional measurement	39	
B.2.2	Bi-directional measurement	40	
B.2.3	OTDR test method on PON	40	
B.2.4	Filtered OTDR on PON	41	
B.3 Test	methods defined in ISO/IEC 14763-3 <mark>:2014</mark>	42	
B.3.1	General	42	
B.3.2	Channels	43	
B.3.3	Links	44	
Annex C (infor	mative) Evaluation of uncertainties	45	
С.1 Туре	e A uncertainties	45	
C.1.1	General	45	
C.1.2	Evaluation of optical source instability and associated uncertainties	45	
С.2 Туре	e B uncertainties	45	
C.2.1	General	45	
C.2.2	Evaluation of the power meter noise	46	
C.2.3	Elements to be considered for power meter stability analysis	46	
C.2.4	Evaluation of the centre wavelength dependence (LS or OTDR)	46	
C.2.5	Spectral width dependence	49	
C.2.6	Evaluation of the uncertainties due to MM launch conditions	49	
C.2.7	Evaluation of the PDL	50	
C.2.8	Uncertainty of absolute power measurement of power meters	51	
C.2.9	Relative uncertainty arising from non-linearity of the OTDR	51	
C.2.10	Uncertainty arising from OTDR noise	52	
C.2.11	Practical determination of uncertainty arising from OTDR noise	54	
C.2.12	Relative uncertainty arising from OTDR cursor placement	57	
C.2.13	Considerations on backscatter coefficient	58	
Annex D (infor	mative) Typical values of uncertainties	59	
Annex E (infor	mative) Linear to dB scale conversion of uncertainties	63	
E.1 Defi	nition of decibel	63	
E.2 Con	version of relative uncertainties	63	
Bibliography		65	
Figure 1 – Fish	nbone analysis	15	
Figure 2 – Mea	asurement model for light source and power meter	19	
Figure 3 – Mea	asurement model for OTDRs	23	
Figure B 1 – M	leasurement configuration	38	
Figure P.2	no cord reference measurement		
		30	
Figure B.3 – T	wo-cord reference measurement	39	
⊢igure B.4 – T	hree-cord reference measurement	39	
Figure B.5 – Equipment cord reference measurement			
Figure B.6 – Location of the cabling under test ports40			
Figure B.7 – Graphic determination of <i>F</i> ₁ and <i>F</i> ₂ 41			

- 4 - IEC TR 61282-14:2024 RLV © IEC 2024

Figure B.8 – Graphic determination of F_1 and F_2	42
Figure B.9 – Measurement on channel Channel measurement configuration	43
Figure B.10 – Channel reference measurement	43
Figure B.11 – Link measurement configuration	44
Figure B.12 – Link reference measurement	44
Figure C.1 – Typical spectral response of a fibre	47
Figure C.2 – Observed PLC splitter wavelength dependency and mathematical model	49
Figure C.3 – Uncertainties due to the launch conditions for a given loss	50
Figure C.4 – Linear regression location for some OTDR method	52
Figure C.5 – Confidence band of the linear regression	53
Figure C.6 – OTDR trace and noise	55
Figure C.7 – Noise asymmetry function of <i>R</i> _{DM}	57
Figure C.8 – Measurement validity limits	57
Table 1 – Source of uncertainty (raw list)	12
Table 2 – Uncertainties due to measuring instruments	16
Table 3 – Uncertainties due to the setup	18
Table 4 – Uncertainties due to cabling	19
Table 5 – Correlation coefficients	26
Table 6 – Sensitivity coefficients for LSPM methods in IEC 61280-4-1, IEC 61280-4-2, and IEC 61280-4-3.	28
Table 7 – Sensitivity coefficients for ISO/IEC 14763-3:2014OTDR methods inIEC 61280-4-2 and IEC 61280-4-3	30
Table 8 – Values of k_{95} for different values of v	33
Table 9 – Typical values of v_i	33
Table C.1 – Spectral attenuation coefficients	48
Table C.2 – Sensitivity coefficients	48
Table D.1 – Typical values of uncertainties and distribution	60
Table D.2 – Typical values of uncertainties related to connectors	62

IEC TR 61282-14:2024 RLV © IEC 2024 - 5 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIBRE OPTIC COMMUNICATION SYSTEM DESIGN GUIDELINES -

Part 14: Determination of the uncertainties of attenuation measurements in fibre plants

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition IEC TR 61282-14:2019. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.

- 6 - IEC TR 61282-14:2024 RLV © IEC 2024

IEC TR 61282-14 has been prepared by 86C: Fibre optic systems and active devices, of IEC technical committee 86: Fibre optics. It is a Technical Report.

This document contains an attached file in the form of an Excel spreadsheet. This file is intended to be used as a complement and does not form an integral part of the document.

This third edition cancels and replaces the second edition published in 2019. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) addition of uncertainties calculation for optical time domain reflectometer (OTDR) measurement methods based on the analysis provided in 61280-4-3;
- b) addition of uncertainties calculation for passive optical networks (PON);
- c) update of the list of reference grade connectors;
- d) addition of probability distribution in Table D.1.

The text of this Technical Report is based on the following documents:

Draft	Report on voting
86C/1913/DTR	86C/1923/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 61282 series, published under the general title *Fibre optic communication system design guidelines*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

IEC TR 61282-14:2024 RLV © IEC 2024 - 7 -

INTRODUCTION

The determination of the uncertainty of every measurement is a key activity, which should be performed by applying dedicated methods as extensively presented in reference documents such as ISO/IEC Guide 98-3:2008, *Guide to the uncertainty of measurement (GUM)*.

This document shows a practical application of these methods for the determination of the measurement uncertainty of the attenuation of fibre optic cabling using optical light sources and power meters as defined in IEC 61280-4-1 and IEC 61280-4-2.

Reference documents such as ISO/IEC Guide 98-3, *Guide to the uncertainty of measurement (GUM)*, detail methods for the determination of the uncertainty of a measurement.

This document shows a practical application of these methods for the determination of the uncertainty in attenuation measurements of fibre optic cabling as defined in IEC 61280-4-1, IEC 61280-4-2, and IEC 61280-4-3, using optical light sources and power meters or OTDRs, with the exception of multimode OTDRs.

It includes the review of all contributing factors to uncertainty (such as launch conditions, spectral width, stability of source, power meter polarization, resolution, linearity, and quality of test cord connectors) to determine the overall measurement uncertainty. This part of IEC 61282 applies to the measurement of single-mode or multimode fibres without restrictions to the fibre parameters, including mode field diameter, core diameter, and NA. However, numerical values given in Clause C.2 and typical values given in Annex D are not valid for multimode fibres types A2, A3, and A4.

The list of uncertainties presented in this document is related to this particular application and should be reconsidered if measurement conditions that are not compliant with measurement requirements defined by IEC 61280-4-1, IEC 61280-4-2, and IEC 61280-4-3.

The reference document for general uncertainty calculations is ISO/IEC Guide 98-3:2008, and this document does not intend to replace it. This document only presents examples, and should be used it is good practice to use it in conjunction with ISO/IEC Guide 98-3:2008. A brief introduction to the determination of measurement uncertainty according to ISO/IEC Guide 98-3:2008 is given in Annex A.

This document is associated with a calculation spreadsheet (Excel) containing practical calculations.

- 8 - IEC TR 61282-14:2024 RLV © IEC 2024

FIBRE OPTIC COMMUNICATION SYSTEM DESIGN GUIDELINES –

Part 14: Determination of the uncertainties of attenuation measurements in fibre plants

1 Scope

This part of IEC 61282, which is a Technical Report, establishes a detailed analysis and calculations of the uncertainties related to the measurement of the attenuation of both multimode and single-mode optical fibre cabling, using optical light sources and power meters. It also includes simplified analysis and calculation of the uncertainties related to the measurement of the attenuation of single-mode optical fibre cabling using OTDRs.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61280-4-1:2009, Fibre-optic communication subsystem test procedures – Part 4-1: Installed cable plant – Multimode attenuation measurement

IEC 61280-4-2:2014, Fibre-optic communication subsystem test procedures – Part 4-2: Installed cable plant – Single-mode attenuation and optical return loss measurement

ISO/IEC Guide 98-3:2008, Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)

There are no normative references in this document.

IEC TR 61282-14

Edition 3.0 2024-04

TECHNICAL REPORT

Fibre optic communication system design guidelines –

Part 14: Determination of the uncertainties of attenuation measurements in fibre plants

– 2 –

IEC TR 61282-14:2024 © IEC 2024

CONTENTS

FOREWORD			
IN	TRODU	CTION	7
1	Scop	е	8
2	Norm	ative references	8
3	Term	s definitions and abbreviated terms	8
Ŭ	2 1	Torms and definitions	o
	3.1 3.2		10
л	0.2	view of uncertainty	10
4			10
	4.1	Original of uncertainty?	10
	4.2	Origin of uncertainties	11
F	4.3 Eibra	what could not be considered as uncertainty?	11
Э	Fibre		11
	5.1	Test methods	11
	5.2	Sources of uncertainty to be considered	11
	5.2.1	Analysis	11
	5.2.2	Uncertainties due to the environment	14
	5.2.3	Uncertainties due to operator skills	14
	5.2.4	Uncertainties due to test methods	14
	5.2.5	Uncertainties due to measuring instruments	14
	5.2.6	Uncertainties due to the setup	16
_	5.2.7	Uncertainties due to cabling	16
6	Unce	rtainties estimation	17
	6.1	Light source power meter measurement methods	17
	6.1.1	Measurement model	17
	6.1.2	Accumulation of uncertainties	19
	6.2	OTDR methods	20
	6.2.1	Measurement model for unidirectional methods	20
	6.2.2	OTDR bidirectional measurements	21
7	Gene	eral representation of the formula using sensitivity coefficients	24
8	Calcu	ılation	28
	8.1	Combined standard uncertainty	28
	8.2	Expanded uncertainty	28
	8.3	Determination of the coverage factor k	28
	8.3.1	General approach	28
	8.3.2	Discussion	28
	8.3.3	Typical values of degree of freedom	29
Ar	nnex A (informative) Mathematical basis	31
	A.1	General	31
	A.2	Type A evaluation of uncertainty	31
	A.3	Type B evaluation of uncertainty	32
	A.4	Determining the combined standard uncertainty	32
	A.5	Reporting	33
Ar	nnex B (informative) Test methods	34
	В.1	LSPM test methods as per IEC 61280-4-1 and 61280-4-2	34
	B.1.1	General	34
	B.1.2	Measurement configuration	34

IEC TR 61282-14:2024 © IEC 2024

- 3 -

B.1.3	One-cord reference configuration	34	
B.1.4	Two-cord reference configuration	35	
B.1.5	Three-cord reference configuration	35	
B.1.6	Equipment cord reference configuration	35	
B.2 OTD	R Test methods as per IEC 61280-4-2 and 61280-4-3	35	
B.2.1	Unidirectional measurement	35	
B.2.2	Bi-directional measurement	36	
B.2.3	OTDR test method on PON	36	
B.2.4	Filtered OTDR on PON	37	
B.3 Test	methods defined in ISO/IEC 14763-3	38	
B.3.1	General		
B.3.2	Channels	39	
B.3.3		40	
Annex C (infor	mative) Evaluation of uncertainties	41	
С.1 Туре	e A uncertainties	41	
C.1.1	General	41	
C.1.2	Evaluation of optical source instability and associated uncertainties	41	
С.2 Туре	e B uncertainties	41	
C.2.1	General	41	
C.2.2	Evaluation of the power meter noise	42	
C.2.3	Elements to be considered for power meter stability analysis	42	
C.2.4	Evaluation of the centre wavelength dependence (LS or OTDR)	42	
C.2.5	Spectral width dependence	45	
C.2.6	Evaluation of the uncertainties due to MM launch conditions	45	
C.2.7	Evaluation of the PDL	46	
C.2.8	Uncertainty of absolute power measurement of power meters	47	
C.2.9	Relative uncertainty arising from non-linearity of the OIDR	47	
C.2.10	Uncertainty arising from OTDR noise	47	
0.2.11	Practical determination of uncertainty arising from OTDR noise	50	
0.2.12	Relative uncertainty arising from OTDR cursor placement	53	
C.2.13	Considerations on backscatter coefficient	54	
Annex D (Infor	mative) Typical values of uncertainties	55	
Annex E (infor	mative) Linear to dB scale conversion of uncertainties	58	
E.1 Defi	nition of decibel	58	
E.2 Con	version of relative uncertainties	58	
Bibliography		60	
Figure 1 – Fist	nbone analysis	13	
Figure 2 – Mea	asurement model for light source and power meter		
Figure 3 – Mea	asurement model for OTDRs		
Figure B 1 – M		3/	
Figure B.1 – M			
Figure $B_{2} = 0$	we cord reference measurement		
Figure D.3 -1°			
⊢igure В.4 – I	-igure B.4 – Three-cord reference measurement35		
Figure B.5 – E	Figure B.5 – Equipment cord reference measurement35		
Figure B.6 – Location of the cabling under test ports			
Figure B.7 – G	Figure B.7 – Graphic determination of F_1 and F_2		

- 4 -

IEC TR 61282-14:2024 © IEC 2024

Figure B.8 – Graphic determination of F_1 and F_2	38
Figure B.9 – Channel measurement configuration	39
Figure B.10 – Channel reference measurement	39
Figure B.11 – Link measurement configuration	40
Figure B.12 – Link reference measurement	40
Figure C.1 – Typical spectral response of a fibre	43
Figure C.2 – Observed PLC splitter wavelength dependency and mathematical model	45
Figure C.3 – Uncertainties due to the launch conditions for a given loss	46
Figure C.4 – Linear regression location for some OTDR method	48
Figure C.5 – Confidence band of the linear regression	49
Figure C.6 – OTDR trace and noise	51
Figure C.7 – Noise asymmetry function of <i>R</i> _{DM}	53
Figure C.8 – Measurement validity limits	53
Table 1 – Source of uncertainty (raw list)	12
Table 2 – Uncertainties due to measuring instruments	14
Table 3 – Uncertainties due to the setup	16
Table 4 – Uncertainties due to cabling	17
Table 5 – Correlation coefficients	23
Table 6 – Sensitivity coefficients for LSPM methods in IEC 61280-4-1, IEC 61280-4-2, and IEC 61280-4-3.	25
Table 7 – Sensitivity coefficients for OTDR methods in IEC 61280-4-2 and IEC 61280-4-3	26
Table 8 – Values of k_{95} for different values of v	29
Table 9 – Typical values of v_i	29
Table C.1 – Spectral attenuation coefficients	44
Table C.2 – Sensitivity coefficients	44
Table D.1 – Typical values of uncertainties and distribution	56
Table D.2 – Typical values of uncertainties related to connectors	57

IEC TR 61282-14:2024 © IEC 2024

- 5 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIBRE OPTIC COMMUNICATION SYSTEM DESIGN GUIDELINES -

Part 14: Determination of the uncertainties of attenuation measurements in fibre plants

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TR 61282-14 has been prepared by 86C: Fibre optic systems and active devices, of IEC technical committee 86: Fibre optics. It is a Technical Report.

This document contains an attached file in the form of an Excel spreadsheet. This file is intended to be used as a complement and does not form an integral part of the document.

This third edition cancels and replaces the second edition published in 2019. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

a) addition of uncertainties calculation for optical time domain reflectometer (OTDR) measurement methods based on the analysis provided in 61280-4-3;

- 6 -

IEC TR 61282-14:2024 © IEC 2024

- b) addition of uncertainties calculation for passive optical networks (PON);
- c) update of the list of reference grade connectors;
- d) addition of probability distribution in Table D.1.

The text of this Technical Report is based on the following documents:

Draft	Report on voting
86C/1913/DTR	86C/1923/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 61282 series, published under the general title *Fibre optic communication system design guidelines*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

IEC TR 61282-14:2024 © IEC 2024

- 7 -

INTRODUCTION

Reference documents such as ISO/IEC Guide 98-3, *Guide to the uncertainty of measurement (GUM)*, detail methods for the determination of the uncertainty of a measurement.

This document shows a practical application of these methods for the determination of the uncertainty in attenuation measurements of fibre optic cabling as defined in IEC 61280-4-1, IEC 61280-4-2, and IEC 61280-4-3, using optical light sources and power meters or OTDRs, with the exception of multimode OTDRs.

It includes the review of all contributing factors to uncertainty (such as launch conditions, spectral width, stability of source, power meter polarization, resolution, linearity, and quality of test cord connectors) to determine the overall measurement uncertainty. This part of IEC 61282 applies to the measurement of single-mode or multimode fibres without restrictions to the fibre parameters, including mode field diameter, core diameter, and NA. However, numerical values given in Clause C.2 and typical values given in Annex D are not valid for multimode fibres types A2, A3, and A4.

The list of uncertainties presented in this document is related to this particular application and measurement conditions that are compliant with measurement requirements defined by IEC 61280-4-1, IEC 61280-4-2, and IEC 61280-4-3.

The reference document for general uncertainty calculations is ISO/IEC Guide 98-3, and this document does not intend to replace it. This document only presents examples, and it is good practice to use it in conjunction with ISO/IEC Guide 98-3. A brief introduction to the determination of measurement uncertainty according to ISO/IEC Guide 98-3 is given in Annex A.

This document is associated with a calculation spreadsheet (Excel) containing practical calculations.

- 8 -

IEC TR 61282-14:2024 © IEC 2024

FIBRE OPTIC COMMUNICATION SYSTEM DESIGN GUIDELINES –

Part 14: Determination of the uncertainties of attenuation measurements in fibre plants

1 Scope

This part of IEC 61282, which is a Technical Report, establishes a detailed analysis and calculations of the uncertainties related to the measurement of the attenuation of both multimode and single-mode optical fibre cabling, using optical light sources and power meters. It also includes simplified analysis and calculation of the uncertainties related to the measurement of the attenuation of single-mode optical fibre cabling using OTDRs.

2 Normative references

There are no normative references in this document.